KESA Chewy
Matthew
Michigan, United States
当前离线
最新动态
总时数 1,882 小时
最后运行日期:2 月 2 日
总时数 2,490 小时
最后运行日期:2025 年 11 月 17 日
100 点经验值
成就进度   101 / 137
总时数 9.2 小时
最后运行日期:2025 年 11 月 2 日
成就进度   1 / 17
Slick 1 月 18 日 上午 10:06 
Remember, topologies are just glorified semi-lattices. If you have two semi-lattices X and Y, and a monotone function f from X to Y then an element a of X is a sufficient factor for b in Y if for any refinement of X W, refinement of Y Z and monotone function f': W -> Z that extends f, for any element w of W, w subs a => f'(w) subs b. Likewise an element a of X is a necessary factor for b in Y if for any refinement of X W, refinement of Y Z and monotone function f': W -> Z that extends f, for any element w of W, w subs a <= f'(w) subs b. An element a of X is a determining factor for b in Y if it is a necessary and sufficient factor. The map f is factorable if every element of Y has a determining factor in X. This means that there exists a function f*: Y -> X. What it means in topology for a map F: X to Y to be continuous is that the induced map f = cl o image_F, from the closed sets of X to the closed sets of Y is a factorable map.
˙˙·٠•●ONLY●•٠·˙˙ 2025 年 9 月 6 日 上午 10:25 
Play today!
🌗Kaede🎭 2025 年 8 月 31 日 上午 8:11 
+rep awesome player, insane shots, queue again? 🥇
76561199033415889 2025 年 6 月 7 日 上午 7:40 
have an offer for ya, added mate.
Opinn 2025 年 5 月 27 日 上午 11:00 
+rep very strategic
76561199386389301 2025 年 5 月 13 日 上午 10:38 
Cool profile pic!